
Vol.199 2026 年 1 月

 GS

1

LetterNeo

SRA の技術情報誌

生成 AI を利用した

ヘルプデスクチャットボット

with RAG and MCP

三島 健

技術本部 技術開発室

1 はじめに

本稿では、生成 AI を利用したヘルプデスク用のチャットボットの構築を行い、得られた

知見をまとめました。最初に、Amazon Bedrock を使ってチャットボットを構築しました。

Bedrock は、Amazon や主要な AI 企業が提供する基盤モデル（FM）を統合 API を通じて

利用できる完全マネージド型サービスです。チャットボットは新たな質問を受け付けると、

過去のヘルプデスク業務で行われた質問と回答で作ったナレッジベースから関連情報を得て、

MCP（Model Context Protocol）サーバから得られる公式情報からも情報を得てドラフト

（回答の下書き）を作成し、質問者へ返します。ここで MCP とは、LLM が外部のデータソ

ースと安全かつ標準化された方法でやり取りするための仕組み（プロトコル）で、このプロ

トコルを使ってエージェントは MCP サーバから情報を得る事ができます。Bedrock で私が

作成したチャットボットは、現在、弊社のヘルプデスク部門で実際に使っており、できるだ

け早急に正確な回答を少ない作業量で質問者へ返す事に貢献しています。しかし実際に使い

続けてもらううちに、新たな要求が出てきました。そこで、それをどうやって実現できるか

も検討し別のプロトタイプも作成しました。このプロトタイプは LangChain を使って実装

しました。LangChain は LLM を活用したアプリケーション開発を簡単に実装するためのフ

2

レームワークです。本稿ではポイントのみを解説しますが、詳細は私が書いた引用文献に記

載してありますので、興味を持たれた方はそちらもご覧ください。

2 ヘルプデスク部門からの要求条件

弊社のマイクロソフト社製品のヘルプデスクを担当している部門が欲しいチャットボット

は以下のような要求条件を満たすものでした。

(1) 過去の質問と回答を参考にドラフトを生成して欲しい。つまり、過去に類似の質問

があった場合は過去の回答をベースにドラフトを生成して欲しい。ここで「ドラフ

ト」とは質問者へ返す回答の下書きのことです。チャットボットが生成したドラフ

トはヘルプデスクの担当者がチェックを行い、ドラフトに修正すべき箇所があった

場合は修正を施してから回答を質問者へ返します。

(2) セキュリティを担保してほしい：①過去の質問と回答を AWS にアップロードした場

合外部へ漏洩することは防ぎたい，②担当者以外はチャットボットにアクセスでき

ないように制限したい。

(3) マイクロソフト社の公式情報も参考にしてドラフトを生成して欲しい。

(4) 普段 Microsoft teams を業務で使っているので UI が teams だと使いやすい。

3 Amazon Bedrock を使ったチャットボット

２章の要求条件を満たすように、以下のように検討して Bedrock を使って実装しました。

AWS のコンソールを使って以下で説明するナレッジベースや MCP サーバとのアクセス機能

をエージェントに追加します。エージェントはユーザの指示を理解し LLM を使いタスクを

自動化するオーケストレーション機能です。

3.1 ナレッジベース

まずは過去の質問と回答からナレッジベース（知識ベース）を作成します。ナレッジベー

スとは、組織内に存在する知識や情報を一元化し、簡単に検索しやすい状態にしたデータベ

ースです。入力する質問に意味的に近い過去の質問と回答を探したいため、類似度検索がで

きるデータベースシステムを利用します。このために、過去の質問と回答を数値ベクトルに

変換し（ベクトル化）、その数値をベクトルデータベースに保存します。ベクトル化には

3

Amazon Titan Text Embeddings V2を使いました。ベクトルデータベースはOpenSearch

Serverless を使いました。

3.2 セキュリティ

前記 Amazon Titan Text Embeddings V2 や OpenSearch Serverless を使うためには

過去の質問と回答を保持したファイル（ワード、CSV、PDF など）を S3 へアップロードし

ておく必要があります。S3 は AWS のクラウド上でデータを安全に保存・管理できるスト

レージサービスです。S3 を適切に設定すれば、高いセキュリティを実現できます。S3 への

アップロードには、https による暗号化通信を使用します。また、S3 への保存は、デフォ

ルトでは暗号化されて保存されます。つまり、デフォルトではデータは暗号化されますしそ

もそも外部からアクセスできないようになっています。これを間違えて解除しないように適

切に使っていれば問題ないです。

また、IAM を使って誰がこのチャットボットにアクセスできるかを細かく制御すること

もできます。IAM とは AWS リソースへのアクセス権限を安全に管理するサービスです。今

回は teams を使いますので、teams 側でもユーザのアクセス制御は可能になります。

3.3 MCP サーバとの接続

チャットボットはナレッジベースのみならず、マイクロソフト社の公式情報も参考にして

ドラフトを作成して欲しいという要求を満たす実装について考えます。

一つの選択肢はマイクロソフト社の公式情報を公開しているホームページからナレッジベ

ースを作成する方法です。この場合、公式情報が変更されホームページの内容に変更があっ

た場合には、ナレッジベースを作り直さなければならず、手間（運用コスト）がかかります。

もう一つの選択肢は、マイクロソフト社が公開している MCP サーバを利用する方法です。

これは LLM が利用できるマイクロソフト社の情報を返してくれるサーバで、無料で利用す

ることができます。公式情報に変更があれば、その直後から最新の情報を返してくれます。

MCP サーバを利用する方がメリットは大きいと考えたため、MCP サーバを使う方法を選択

しました。

しかし、Bedrock には MCP サーバと直接やり取りする手段がありません。そこで、

Bedrock のエージェントは ActionGroup に設定した Lambda 関数を実行してその情報を取

得する機能を使います。ActionGroupとは実行可能なアクションのリストであり、Lambda

4

関数はアクションを実際に処理するコードです。Lambda 関数の中に MCP クライアントを

実装しました。詳細は文献[2]をご覧ください。

3.4 全体構成

上記 3.1 から 3.3 の検討結果から以下の構成としました。なお、上記３.1 から３.３は要

点のみの説明であるため、詳細の検討は文献[1]をご覧ください。上記で説明した Titan と

OpenSearch の他に、LLM は Claude 3.7 Sonnet を使いました。エージェントと UI であ

る teams は Amazon Q Developer で接続しました。

4 ヘルプデスク部門で使用中。そして、新たな課題が

発生する

現在、ヘルプデスク部門で継続して使用してもらい、小さなトラブルはありましたが、早

急に正確な回答を少ない作業量で質問者へ返す事に貢献できて良かったと思っています。ト

ラブルの詳細は文献[1]をご覧ください。

以下のスクリーンショットは teams の画面で本チャットボットを使ってみた例です。ま

るで teams の他のメンバにメッセージを送るのと同様に、「Amazon Q」というメンバに

「mac で microsoft office を使えますか？」と質問を送りました。すると、本チャットボッ

トはナレッジベースの情報と MCP サーバからの情報を使って回答を表示してくれました。

5

しかし、実際に使っていると新たな課題や新たな要求が生まれました。その中で最も困難

な課題は添付画像付きの質問でした。次章で詳しく説明します。

5 新たな課題とは？

３章で説明したヘルプデスクのチャットボットは文章のみの質問を受け付けてドラフトを

返すものです。しかし、文章のみではなく、添付画像が付いた質問もあります。

例えば、次のページの画像を添付して、「このエラーの原因と解決策を教えてください。」

という質問文です。この画像はワードファイルを開こうとしたら正常に開けずに「We’re

sorry, but Word has run into an error opening this document.」というエラーメッセー

ジが出たトラブルです。この画像は Microsoft copilot に生成してもらいました。チャット

ボットにはこのトラブルの解決方法を回答して欲しいです。３章で作ったチャットボットは

文章しか入力できないため、上記質問文のみだと、チャットボットは「このエラー」とは何

なのか理解できず、正常な応答が返せません。そこで、最初に「ワードファイルを開こうと

したら、「We’re sorry, but Word has run into an error opening this document.」とい

うエラーメッセージが出ました。このエラーの原因と解決策を教えてください。」という統

合した質問を生成した後で、この質問に対するドラフトを生成する必要があります。

6

ところが、現在（２０２５年）の Bedrock では、エージェントに画像を渡すインターフ

ェースがありません。また、直接エージェントのコンソールで画像を取り込もうとしても、

そのような機能はありません。従って、Bedrock では実現は難しいことが分かりました。

そこで、LangChain を使って実現する方法を検討しました。

6 LangChain を使ったチャットボット

LangChain は LLM と外部データやツールとを有機的に組み合わせて高度な機能を実現す

るためのオープンソースのフレームワークです。Bedrock は LLM などの基盤モデルを安全

で簡単に利用することができるサービスですが、LangChain は LLM を利用するだけでなく

複雑なアプリケーションを柔軟に開発することができます。Bedrock では Bedrock 上で利

用できるように設定された基盤モデルしか利用できませんが、LangChain は AWS、Azure,

Google、さらには OSS も利用可能です。私は最初は Ollama という LLM の OSS を使って

いましたが、私が使えるマシン環境が貧弱で動作が遅かったため、最終的には Bedrock が

提供している Claude 4.5 Haiku を LLM として使いました。ベクトルデータベースは OSS

の Chroma を使いました。つまり、ローカルで動作する OSS と AWS とを LangChain で統

合しています。

7

6.1 方針

５章で説明した、添付画像付きの質問にチャットボットが正しく回答するためには、以下

の機能が必要だと考えました。

(a) 画像から重要な文章（例えば、エラーメッセージ）を取り出すこと

(b) 取り出した文章と元の質問を統合して自然な文章の質問を生成すること

(c) 上記(b)で統合した質問を使ってナレッジベースから関連情報を取り出すこと

(d) 必要ならば、上記(b)で統合した質問を使って MCP サーバから関連情報を取り出

すこと

(e) 上記(c)および(d)を使ってドラフトを生成すること

6.2 画像から重要な文章（例えば、エラーメッセー

ジ）を取り出すために LLM を使う

以前から OCR という技術は存在しました。しかし、ここでは単なる OCR では不足です。

サンプル画像をご覧ください。たくさんの文字が書いてあります。OCR では、全ての文字

を拾ってしまいます。ここでは重要な文章だけを取り出して欲しいのです。つまり、たくさ

んの文字列の中からどの文章が重要かを判断してもらい、その文章だけを出力して欲しいの

です。そこで、LLM を使いました。LLM にはあらかじめシステムプロンプト（LLM がどん

なルールに従うかの定義）に「重要な文章、特にエラーメッセージ、を抽出してください。」

と設定しておきます。すると LLM は「We’re sorry, but Word has run into an error

opening this document.」が重要だと判断し出力します。

6.3 取り出した文章と元の質問を統合して自然な文

章の質問を生成するために LLM を使う

6.2 で取り出した文章と元の質問文「このエラーの原因と解決策を教えてください。」を

統合して自然な質問文を LLM に生成してもらいます。以下が LLM に生成してもらった統合

された質問文です。

Microsoft Wordでドキュメントを開く際に「We're sorry, but Word has run into an error

opening this document.」というエラーが表示されるのですが、この原因と解決策を教

えてください。

8

6.4 統合された質問文に関する情報をナレッジベース

から取り出す

3.1 で説明したようにナレッジベースを作るためにはベクトルデータベースが必要です。

Bedrock を使って構築する場合は Bedrock が提供している OpenSearch を使いました。

LangChain の良いところの一つは、AWS, Azure, Google, OSS など様々なサービスを利用

できる事なので、ここでは OSS の Chroma を使ってみました。

6.5 統合された質問文に関する情報を MCP サーバか

ら取り出すために、LLM を使ったエージェント

を使う

LangChain のエージェントは LLMを使って MCP サーバのどのツールを使うかを選定し、

そのツールに必要な引数を生成し、実行結果を解釈し整理する機能を有しています。これを

利用すれば、Bedrock の Lambda 関数 [2] のような煩雑なコーディングは必要ありません。

6.6 ナレッジベースからの情報と MCP サーバからの

情報からドラフトを生成してもらうために LLM

を使う

最後に、ナレッジベースからの情報と MCP サーバからの情報から LLM にドラフトを生成

してもらいます。上記検討結果をまとめて python で実装しました。

6.7 実行結果

実行はローカル環境で以下のようにして行いました。--question オプションの後に質問

文を記述し、--imageオプションの後に添付ファイル名を指定します。--imageオプション

は省略することが可能で、省略した場合は３章の bedrock 版と同様、このチャットボット

は質問文のみからドラフトを生成します。プログラムの中身の解説は省略しますが、このプ

ログラムの中には AWS の SDK を使って Bedrock の LLM である Claude 4.5 Haiku を利用

するコードが含まれています。ベクトルデータベースはローカル環境で動作させています。

% python3 langchain-chatbot.py --question “このエラーの原因と解決策を教えてくだ

さい。” --image screenshots/word-error.jpeg

9

実行結果は以下の通りです。Markdown 形式で出力してもらいました。チャットボット

は Word ファイルが開けないトラブルだと認識し、その解決方法のドラフトを生成できた事

がわかります。

10

 このチャットボットは (a) 画像から重要な文章を取り出す、(b) 取り出した文章と元の

質問を統合して自然な文章の質問を生成する、(d) 上記(b)で統合した質問を使って MCP サ

ーバから関連情報を取り出す、(e) 得られた情報を使ってドラフトを生成する、という 4 つ

の異なる作業に LLM を利用しています。これらを組み合わせることで Bedrock では作成が

困難であった添付画像付きの質問にもドラフトが生成できるようになりました。

7 Bedrock 版チャットボットと LangChain版チャット

ボットの比較

以上のようにして、Bedrock 版のチャットボットと LangChain 版のチャットボットを作

成しました。比較してみると、以下のような違いがあります。

 Bedrock 版チャットボット LangChain 版チャットボット

利用できる基盤モデル Bedrock で用意されたモデルのみ AWS, Azure, Google, OSS

MCP サーバとの接続の煩雑さ 煩雑（MCPプロトコルを処理する

MCPクライアントを実装する必要

がある）

簡単（エージェントは MCP プロ

トコルを扱える）

セキュリティ デフォルトで暗号化されている、

IAM でアクセス制御可能

自分で実装が必要

クラウドかオンプレミスか？ AWS オンプレミスのみも可能、オンプ

レミスとクラウドの混合も可能

柔軟性、拡張性 低い 高い

シンプルなチャットボットを作りたい場合は Bedrock で十分だと思います。しかし、６

章で説明したように質問文の他に添付画像が付いているケースや MCP サーバともやり取り

したいケースなど、複雑な構成を実現したい場合は LangChain を使ったほうが実現しやす

そうです。しかし、LangChain 版の場合は、セキュリティを強化する方法については別途

検討し実装する必要がありそうです。LangChain であれば、オンプレミスのみ（ローカル

環境のみでクラウドを使わない）でもクラウドとローカル環境の混合も可能ですし、OSS

のみで実現することも可能です。要求条件を検討してどちらが良いかを決定する必要があり

ます。

GSLetterNeo Vol.199
2026 年 1 月 20 日発行

発行者 株式会社 SRA 技術本部 先端技術研究室

編集者 熊澤努 方 学芬

バックナンバー https://www.sra.co.jp/public/sra/gsletter/

お問い合わせ gsneo@sra.co.jp

〒171-8513 東京都豊島区南池袋 2-32-8

11

以下の私が書いた引用文献に詳細を記載してありますので、ご興味がある方はこちらもご

覧ください。Bedrock 版のチャットボット全体 [1]、Bedrock 版チャットボットで MCP サ

ーバと接続する方法 [2]、LangChain 版のチャットボット [3]、の解説となっています。

 引用文献

[1] 三島健, "Amazon Bedrock with RAG&MCP を使ってヘルプデスク用チャットボット

を 構 築 し て 実 際 に 導 入 し て み た ,"

https://qiita.com/ken340/items/be00c816a3bc661e5db0.

[2] 三 島 健 , "Bedrock で作ったチャットボットに MCP サーバを繋ぐ方法 ,"

https://qiita.com/ken340/items/fabec06df3f82e67a387

[3] 三島健, " Bedrock を使ったチャットボットを作って気がついた課題を LangChain

で実装してみた," https://qiita.com/ken340/items/af22fa4ac8a7ccd99985

